三、余数
在整数除法运算中,除了前面说过的“能整除”情形外,更多的是不能整除的情形,例如 95÷3, 48÷5.不能整除就产生了余数.通常的表示是:
65÷3=21…… 2, 38÷5=7…… 3.
上面两个算式中2和3就是余数,写成文字是
被除数÷除数=商……余数.
上面两个算式可以写成
65=3×21+2, 38=5×7+3.
也就是
被除数=除数×商+余数.
通常把这一算式称为带余除式,它使我们容易从“余数”出发去考虑问题,这正是某些整数问题所需要的.
特别要提请注意:在带余除式中,余数总是比除数小,这一事实,解题时常作为依据.
例17 5397被一个质数除,所得余数是15.求这个质数.
解:这个质数能整除
5397-15=5382,
而 5382=2×31997×13×23.
因为除数要比余数15大,除数又是质数,所以它只能是23.
当被除数较大时,求余数的一个简便方法是从被除数中逐次去掉除数的整数倍,从而得到余数.
例18 求645763除以7的余数.
解:可以先去掉7的倍数630000余15763,再去掉14000还余下 1763,再去掉1400余下363,再去掉350余13,最后得出余数是6.这个过程可简单地记成
645763→15763→1763→363→13→6.
如果你演算能力强,上面过程可以更简单地写成:
645763→15000→1000→6.
带余除法可以得出下面很有用的结论:
如果两个数被同一个除数除余数相同,那么这两个数之差就能被那个除数整除.
例19 有一个大于1的整数,它除967,1000,2001得到相同的余数,那么这个整数是多少?
解:由上面的结论,所求整数应能整除 967,1000,2001的两两之差,即
1000-967=33=3×11,
2001-1000=1001=7×11×13,
2001-967=1034=2×11×47.
这个整数是这三个差的公约数11.
请注意,我们不必求出三个差,只要求出其中两个就够了.因为另一个差总可以由这两个差得到.
例如,求出差1000-967与2001-1000,
那么差
2001-967=(2001-1000)+(1000-967)
=1001+33
=1034.
从带余除式,还可以得出下面结论:
甲、乙两数,如果被同一除数来除,得到两个余数,那么甲、乙两数之和被这个除数除,它的余数就是两个余数之和被这个除数除所得的余数.
例如,57被13除余5,152被13除余9,那么57+152=209被13除,余数是5+9=14被13除的余数1.