例14 将8个数6,24,45,65,77,78,105,110分成两组,每组4个数,并且每组4个数的乘积相等,请写出一种分组.
解:要想每组4个数的乘积相等,就要让每组的质因数一样,并且相同质因数的个数也一样才行.把8个数分解质因数.
6=2×3, 24=23×3,
45=32×5, 65=5×13,
77=7×11, 78=2×3×13,
105=3×5×7, 110=2×5×11.
先放指数最高的质因数,把24放在第一组,为了使第二组里也有三个2的因子,必须把6,78,110放在第二组中,为了平衡质因数11和13,必须把77和65放在第一组中.看质因数7,105应放在第二组中,45放在第一组中,得到
第一组:24,65,77,45.
第二组:6,78,110,105.
在讲述下一例题之前,先介绍一个数学名词--完全平方数.
一个整数,可以分解成相同的两个整数的乘积,就称为完全平方数.
例如:4=2×2, 9=3×3, 144=12×12, 625=25×25.4,9,144,625都是完全平方数.
一个完全平方数写出质因数分解后,每一个质因数的次数,一定是偶数.
例如:144=32×42, 100=22×52,…
例15 甲数有9个约数,乙数有10个约数,甲、乙两数最小公倍数是2800,那么甲数和乙数分别是多少?
解:一个整数被它的约数除后,所得的商也是它的约数,这样的两个约数可以配成一对.只有配成对的两个约数相同时,也就是这个数是完全平方数时,它的约数的个数才会是奇数.因此,甲数是一个完全平方数.
2800=24×52×7.
在它含有的约数中是完全平方数,只有
1,22,24,52,22×52,24×52.
在这6个数中只有22×52=100,它的约数是(2+1)×(2+1)=9(个).
2800是甲、乙两数的最小公倍数,上面已算出甲数是100=22×52,因此乙数至少要含有24和7,而24×7=112恰好有(4+1)×(1+1)=10(个)约数,从而乙数就是112.
综合起来,甲数是100,乙数是112.
例16 小明买红蓝两种笔各1支共用了17元.两种笔的单价都是整元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买都不能把35元恰好用完,问红笔、蓝笔每支各多少元?
解:35=5×7.红、蓝的单价不能是5元或7元(否则能把35元恰好用完),也不能是17-5=12(元)和17-7=10(元),否则另一种笔1支是5元或7元.
记住:对笔价来说,已排除了5,7,10,12这四个数.
笔价不能是35-17=18(元)的约数.如果笔价是18的约数,就能把18元恰好都买成笔,再把17元买两种笔各一支,这样就把35元恰好用完了.因此笔价不能是18的约数:1,2,3,6,9.
当然也不能是17-1=16,17-2=15,17-3=14,17-6=11, 17-9=8.现在笔价又排除了:
1,2,3,6,8,9,11,14,15,16.
综合两次排除,只有4与13未被排除,而4+13=17,就知道红笔每支 13元,蓝笔每支 4元.