来源:青岛网整理 2011-10-19 11:21:47
每次考试公布答案之后,都会有同学大呼后悔。综合分析这时由于以下几个原因造成的。
一、审题不细
审题是正确理解问题的基础,是做题中的关键环节。有些同学在审题时不仔细,经常出现“单位不统一”、“答非所问”、“篡改题意”等多种问题。
例如:有这样一道题“198+1998+19998+…+199…98(最后一个加数中有2000个9)的和的各位数字相加,和是A。A=____.”
有些同学没有仔细审题,一看到“和是A”三个字,就错误地认为本题求的是整个算式的和。而实际题目中是要将这个和的各个数位上的数字相加,再求出和。相信这个题很多同学都会做,而恰是因为审题的问题,粗心大意的同学就失去了得分机会,这是非常可惜的。
因此,要想把题目做正确,首要问题就是要认真审题,这是做好题目的第一步,第一步的方向错了,以后的努力就白费了。
认真审题应成为你的好习惯,要做到这一点,其实并不难。首先,你要有这方面的意识,其次,就是在读题时,注意到题目中的每一个字,有些题往往是一字之差,谬之千里。
二、错误理解题意
可以这样说,审题是对题目进行初步的感知。而理解题意这一环节,决定你考虑问题的角度,确定你考虑问题的方法。因此,这是做题中的重要环节。
例如,有这样一道题“由1,3,5,7,9,11,13,15,17,19十个数组成甲组数;由2,4,6,8,10,12,14,16,18,20十个数组成乙组数。分别由甲组数与乙组数中各取一个数相加,共可得到不同的和的个数是多少?”
有些同学看到问题后,错误地以为甲组数中的每一个数,都与乙组中的10个不同的数相加,组成一个不同的和,这样求出的结果为10×10=100 种。而这样求出的100个和中,有不少重复的情况,如:1+6=3+4=5+2.题目中问的是不同的和,这些同学在理解题意时,根本没有注意到这一点,致 使出现了错误。
而正确理解题意后,注意到了重复情况,就可马上意识到,这道题不应从过程考虑,而是从结果直接出发,寻找规律,如,最小的和为1+2=3,最大的和为19+20=39.由3至39所有的奇数都可得到,因此,可轻松得解(39-3)÷2+1=19个。
因此,要想解决好问题,正确理解题意是非常重要的。要做到这一点,就需要大家仔细思考问题。
另外,在这里,给大家提供一个好的方法:就是要重视改错的环节。平时在做题过程中,大家或多或少,都会出现一些错误,改正错误前,你要先查一下出错原因,并将一些在你身上经常出现的类似错误加以归纳,在以后尽量避免。
编辑推荐:
关注网官方微信 数学资料、数学真题、更有全国教育资讯 微信搜索“网”或扫描二维码即可添加