【答案】
分析:根据题意,可采用假设的方法进行分析,100个自然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都至少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1至100的自然数中只有33个是3倍数,所以不能.
解答:假设能够按照题目要求在圆周上排列所述的100个数,
按所排列顺序将它们每5个分为一组,可得20组,
其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3的倍数.
从而一共会有不少于40个数是3的倍数.但事实上在1至100的这100个自然数中只有33个数是3的倍数,
导致矛盾,所以不能.
答:不能.
点击查看更多:五年级数学天天练试题及答案
试题下载:小学各年级试卷及答案下载
网提醒:
单元试题、各科教案、练习题
尽在“网”微信公众号