1.某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,该列车与另一列长320米,速度为每小时行64.8千米的火车错车时需要()秒。
解:火车过桥问题
公式:(车长+桥长)/火车车速=火车过桥时间
速度为每小时行64.8千米的火车,每秒的速度为18米/秒,
某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,则
该火车车速为:( 250-210)/(25-23)=20米/秒
路程差除以时间差等于火车车速.
该火车车长为:20*25-250=250(米)
或20*23-210=250(米)
所以该列车与另一列长320米,速度为每小时行64.8千米的火车错车时需要的时间为
(320+250)/(18+20)=15(秒)
2.一列火车长160m,匀速行驶,首先用26s的时间通过甲隧道(即从车头进入口到车尾离开口为止),行驶了100km后又用16s的时间通过乙隧道,到达了某车站,总行程100.352km。求甲、乙隧道的长?
解:设甲隧道的长度为x m
那么乙隧道的长度是(100.352-100)(单位是千米!)*1000-x=(352-x)
那么
(x+160)/26=(352-x+160)/16
解出x=256
那么乙隧道的长度是352-256=96
火车过桥问题的基本公式
(火车的长度+桥的长度)/时间=速度
3.甲、乙两人分别沿铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米/小时,这列火车有多长?
分析:从题意得知,甲与火车是一个相遇问题,两者行驶路程的和是火车的长.乙与火车是一个追及问题,两者行驶路 程的差是火车的长,因此,先设这列火车的速度为χ米/秒,两人的步行速度3.6千米/小时=1米/秒,所以根据甲与火车相遇计算火车的长为 (15χ+1×15)米,根据乙与火车追及计算火车的长为(17χ-1×17)米,两种运算结果火车的长不变,列得方程为
15χ+1×15=17χ-1×17
解得:χ=16
故火车的长为17×16-1×17=255米